Event scripts

An event script (often referred to as just an event or a script) is a series of instruction codes created using the Event Editor. An event script consists of a name, a set of flags that identify special properties of the script (such as it being a trap, for example), a value representing the current number of lines of the event script, and lastly the lines of instructions themselves. Event scripts are attached to objects (including a map itself) at various script attachment points, which are actions defined according to each object. For example, most objects have attachment points at examine, use, and destroy. Many items (objects that can picked up) have attachment points at get, drop, or throw as well, and some objects such as doors and chests can have an attachment point at unlock.

Event scripts have associated dialog files, made with a text editor. These dialog files are discussed later in this document.

A typical event script might look like this:

Name: One-Shot Explosive Trap

Flags: trap, remove

Lines: 3

0: overlay animation explosion

1: do 10-20 damage of type fire in radius 3 squares

2: return

This event script may be attached to a chest at its use attachment point. Anyone attempting to use (i.e. open) the chest will cause the script to execute. Since the script is marked with the trap flag, various skills and spells can detect its presence and/or remove it from the chest. Since the script also contains the remove flag, it will remove itself after execution, which means the trap only goes off once. Had this flag been omitted, the trap would have gone off whenever the chest was opened, until the trap was removed by skill or spell or until the chest was destroyed.

Each line of the script can contain an action statement or a conditional statement. Action statements are simply executed straight away, while conditional statements are evaluated and if true, the THEN action statement is executed. If false, the ELSE action statement is executed. Conditional statements cannot be nested (i.e. the THEN or ELSE statement must be an action statement, not a conditional statement), but using a GOTO action statement allows the logical equivalent of nested conditionals.

In these statements below, OBJ can be instantiated as

the attached object

the triggering object

any NPC follower of the triggering creature

every NPC follower of the triggering creature

anyone in the PC group (the PC or his followers)

everyone in the PC group (the PC and his followers)

any PC in the triggering creature’s party (includes triggering creature)

every PC in the triggering creature’s party (includes triggering creature)

anyone in the triggering creature’s team (PC and NPC, includes triggering creature)

everyone in the triggering creature’s team (PC and NPC, includes triggering creature)

anyone in the vicinity (includes triggering creature)

everyone in the vicinity (includes triggering creature)

the current object of a loop

In the statements, below, the value for NUM can be

A counter: there are 4 counters (0-3) which can each hold values 0-255

A global variable: there are 1000 of these (1000-1999) which can hold a number

A global flag: there are 2200 of these (1000-3199) which can hold a flag

A local variable: there are 10 of these (0-9) which can each hold a number

A pc variable: there are 1000 of these (1000-1999) which can hold a number

A pc flag: there are 2200 of these (1000-3199) which can hold a flag

A number which can be (approximately) from –2 billion to 2 billion

The variable NUM can be used as an lval (having their values set) or an rval (having their values read), except numbers (which can only be rvals).

A local flag F is one of the 32 flags (0-31) that can be set or unset in each script.

A range RNG is simply a random number between two NUM’s. OBJ values are excluded from being included in ranges.

An object field FLD is a field on a list of valid fields for all objects. It is the scripter’s responsibility to make sure that the object has that field. A warning message is displayed during testing if an invalid field is set or read, but no such warning is issued during gameplay.

A script has access to its location, which is either the tile it is attached to or the location of the object it is attached to (or its parent if it’s in inventory)

It is assumed the script can refer to animations, sound effects, music tracks, movies, locations, spells, damage types, AI goals, quest states and other scripts, presumably using lists.

Action statements

Action statements are the default state of a line. Some example action statements are:

	Script Variables
	

	Set flags NUM
	Set flag NUM so it will test as TRUE

	Clear flag NUM
	Unset flag NUM so it will test as FALSE

	NUM1 = NUM2
	Set NUM1 to the value of NUM2

	OBJ1 = OBJ2
	Set OBJ1 to the value of OBJ2

	NUM = NUM + NUM
	Add two NUM’s and store in a third

	NUM = NUM – NUM
	Subtract two NUM’s and store in a third

	NUM = NUM * NUM
	Multiply two NUM’s and store in a third

	NUM = NUM / NUM
	Divide two NUM’s and store in a third

	NUM = Object OBJ Field F
	The value of the field F in object OBJ is placed in NUM

	Global Variables
	

	
Set Quest NUM global state to STATE
	Set the global state of the specified quest

	
Set Quest NUM state in PC to STATE
	Set the state of the specified quest in the PC

	Looping
	

	
For OBJ LOOP
	Begin a loop over all possible values of OBJ

	
End LOOP
	Loop again on next value of OBJ

	Break LOOP
	Stop the loop by jumping to the statement following the next End LOOP

	Items
	

	Adjust OBJ’s gold amount by NUM
	Add NUM gold to OBJ

	Script Control
	

	Do nothing
	Do nothing and continue to the next line

	Return and SKIP default
	Quit running this script

	Return and RUN default
	Quit running this script and run the default action script for this object

	Goto line NUM
	The next line of the script to execute is line NUM

	
Remove this script
	Remove this script from its attachment point. The script will continue running as if attached there until it returns

	
Change this script to script NUM
	Replace this script at its attachment point with the new script NUM. The old script will continue running as if attached there until it returns

	
Call line L in Script S with Trigger OBJ and Attached Y
	Transfer control to script S at line L as if it was triggered and attached to the specified objects. When that script returns, this script will continue on its next line.

	Object
	

	Store type of OBJ in NUM
	store the object type of OBJ in NUM (the type is ordered as Obj_Type in obj.h)

	Critter
	

	Give Critter OBJ the goal G
	The critter will be given the goal of G (which may to barter, attack, walk somewhere, etc).

	
Have OBJ become follower of OBJ (success: say dialog NUM. failure: say dialog NUM)
	OBJ will try to become a follower of the second OBJ. If successful, he will say the specified dialog line; otherwise, if he cannot join for some reason, he will say the other line.

	
Have OBJ stop being follower
	OBJ will try to stop being a follower of the second OBJ

	Add blessing NUM to OBJ
	Add the blessing to the creature

	Remove blessing NUM from OBJ
	Remove the blessing from the creature

	Add curse NUM to OBJ
	Add the curse to the creature

	Remove curse NUM from OBJ
	Remove the curse from the creature

	Reaction of NPC to PC, store in NUM
	Get reaction and store in NUM

	Reaction of NPC to PC, set to NUM
	Set reaction to NUM

	Reaction of NPC to PC, adjust by NUM
	Add NUM to reaction

	Armor of OBJ, store in NUM
	get armor (ordered as TIG_Art_Armor in art.h) of critter OBJ and store in NUM

	Stat NUM of OBJ, store in NUM
	get stat NUM (order as Stat in stat.h) from critter OBJ and store in second NUM

	Combat initiate: OBJ attacks OBJ
	Begin combat as if the first OBJ had attacked the second

	
Dialog NUM
	The attached dialog is executed at line NUM

	
Have OBJ say line NUM
	The line NUM from the attached dialog is printed in a speech bubble above the head of OBJ

	
Print line NUM
	The line NUM from the attached dialog is printed in the display window

Putting a RETURN action statement at the end of the script is optional. If the script finishes with no kind of return statement, then the script will act as if a RETURN statement is present.

Conditional statements

Conditional statements have the form

IF <condition> THEN <action1> ELSE <action2>

If <condition> evaluates to true, then <action1> is executed. If it evaluates to false, then <action2> is executed. Both action statements are selected from the same list of possibilities as an action statement. Some example expressions for <condition> are:

	Script Variables (there are 32 bit flags)
	

	Test local flag F
	True if flag F is set

	NUM = NUM
	True if both NUM’s are equal

	NUM <= NUM
	True if first NUM <= second NUM

	OBJ = OBJ
	True if both OBJ’s are equal

	Nonscript Variables
	

	
Quest NUM state = STATE
	True if the specified quest is in State

	PC has Quest NUM in STATE
	True if the PC has quest in the state

	
Is daytime
	True if it is daytime (6am to 6pm)

	Items
	

	OBJ is carrying at least NUM gold
	True if critter or container has at least NUM coins

	
OBJ is carrying Item named NUM
	True if critter or container OBJ has the second item with internal name NUM in its inventory

	Critter
	

	
OBJ has bless NUM
	True if the critter has the blessing

	
OBJ has curse
	True if the critter has the curse

	OBJ has bad associates
	True if critter has followers who are summoned (like zombies, elementals, etc)

	OBJ is polymorphed
	True if critter has the spell on him/her

	OBJ is shrunk
	True if critter has the spell on him/her

	OBJ has a “Body Of” spell
	True if critter has the spell on him/her

	OBJ is invisible
	True if critter has the spell on him/her

	OBJ has mirror image
	True if critter has the spell on him/her

	
NPC has met PC
	True if the critter NPC has met PC before

Global variables

Global variables are stored in save games. Every script can see every global variable, so care must be exercised when using one. Since global variables retain their value across script instantiation and must be saved with save games, there are a limited number of global variables available.

Global flags

Global flags are stored in save games. Every script can see every global flag, so care must be exercised when using one. Since global flags retain their value across script instantiation and must be saved with save games, there are a limited number of global flags available.

PC variables

PC variables are stored in the player object. Every script can see every PC variable, so care must be exercised when using one. Since PC variables retain their value across script instantiation and must be saved with the player object, there are a limited number of PC variables available.

PC flags

PC flags are stored in the player object. Every script can see every PC flag, so care must be exercised when using one. Since PC flags retain their value across script instantiation and must be saved with the player object, there are a limited number of PC flags available.

Local variables

Local variables are used by an individual script. They do NOT maintain the values between calls to the script. Local variables are used to temporary processing, such as calculating the reward that an NPC may give a player, or to store a value to avoid calling a function repeatedly.

Dialog

Dialog is handled in scripts by calls to the dialog tree, maintained separately as file similar to our messaging system. A line structure is

{N}{Text}{G}{I}{Test}{R}{Result}

where N is the number of the text line, and the remaining fields differ in meaning depending on whether the line is a PC and NPC response.

For a PC response,

{Text} is the text of the dialog message

{G} field is left empty if any gender can say it, 0 if only female PC’s can say it, and 1 if only male PC’s can say the line.

{I} is the minimum IQ (if negative, it’s the maximum IQ, and it CANNOT be zero)

{Test} contains tests to see if the PC can speak this line. See the Test section below.

{R} is the response line (or if negative, it’s the script line to run if this response is chosen, or if zero, it means to return to the calling point in the associated script).

{Result} contains results which are triggered if the PC speaks this line. See the Result section below.

For an NPC response,

{Text} is the NPC response if the PC is male

{G} is the NPC response if the PC is female

{I} must be left empty

{Test} must be left empty

{R} is usually empty, but on a generated dialog line for an NPC, the R field may be filled in with a response line. See GeneratedDialog.doc for more details.

{Result} contains results which are triggered if the NPC speaks this line in dialog (but not if used as a float or barter or other message). See the Result section below.

All of the lines following an NPC response, up to but not including the next NPC response, are the PC responses. For example:

{14}{Can I help you sir?}{Can I help you madam?}{}{}{}{}

{15}{Just looking...}{}{1}{}{20}{}

{16}{Do you have any swords?}{}{5}{}{30}{}

{17}{I am looking for a triply-lathed gold-gilded hilt with silver inlay}{}{13}{}{-15}{}

{20}{OK, let me know if you see anything.}{Call me if you need me.}{}{}{}{}

etc...

So line 14 is an NPC line, and lines 15, 16 and 17 are PC responses, and line 20 is another NPC response. If dialog jumps to line 14, the NPC will speak that line, and the PC will be given the choice of lines 15, 16, or 17.

Note that line 17 calls -15 when selected by the player, which refers to the calling script’s line 15. That line will check the NPC’s reaction to the PC and then call back into the dialog tree accordingly.

Test

The Test field is non-blank only on certain PC lines that the designer wishes to restrict to certain PC’s. The general format of a test field is

code num1 num2

where code is a 2-letter code possibly followed by one or two numbers. Multiple tests can be placed in one field, separated by commas, and their restriction is AND’ed together (meaning the test only succeeds if all of the individual tests succeed).

Test codes and their numbers are:

	$$
	if num1 > 0, true if PC and followers have at least num1 gold

if num1 < 0, true if PC and followers have no more than -num1 gold

	al
	if num1 > 0, true if PC’s alignment is >= num1

if num1 < 0, true if PC’s alignment is <= -num1

	ar
	if num1 > 0, true if PC is aware of area num1 (it is marked on his map)

if num1 < 0, true if PC is NOT aware of area -num1

	ch
	if num1 > 0, true if PC’s Charisma is >= num1

if num1 < 0, true if PC’s Charisma is <= -num1

	fo
	if num1 is 0, true if NPC is not a follower of PC

if num1 is 1, true if NPC is a follower of PC

	gf
	true if global flag num1 is equal to value num2

	gv
	true if global variable num1 is equal to value num2

	ha
	if num1 > 0, true if PC’s Haggle is >= num1

if num1 < 0, true if PC’s Haggle is <= -num1

	ia
	if num1 > 0, true if PC is in area num1

if num1 < 0, true if PC is NOT in area –num1

	in
	if num1 >= 0, true if PC or any follower has item with name index num1

if num1 < 0, true if NPC has item with name index –num1

	lc
	true if local counter num1 is equal to num2

	le
	if num1 > 0, true if PC’s level is >= num1

if num1 < 0, true if PC’s level is <= -num1

	lf
	true if local flag num1 is equal to num2

	ma
	if num1 > 0, true if PC’s Magical Aptitude is >= num1

if num1 < 0, true if PC’s Magical Aptitude is <= -num1

	me
	if num1 is 0, true if NPC has not met PC before

if num1 is 1, true if NPC has met PC before

	na
	if num1 > 0, true if PC’s alignment is >= -num1

if num1 < 0, true if PC’s alignment is <= num1

Examples:

 Na 100 is true if the PC’s alignment is –100 or greater (-90, -50, 0, 80, 500, etc)

 Na –100 is true if the PC’s alignment is –100 or lower (-150, -300, -500, etc)

	ni
	if num1 >= 0, true if PC and followers do NOT have item with name index num1

if num1 < 0, true if NPC does NOT have item with name index –num1

	pa
	if num1 > 0, true if follower with name index num1 is in the PC’s party

if num1 < 0, true if follower with name index num1 is NOT in the PC’s party

	pe
	if num1 > 0, true if PC’s Perception is >= num1

if num1 < 0, true if PC’s Perception is <= -num1

	pf
	true if PC flag num1 is equal to value num2

	ps
	if num1 > 0, true if PC’s Persuasion is >= num1

if num1 < 0, true if PC’s Persuasion is <= -num1

	pv
	true if PC variable num1 is equal to value num2

	qa
	true if quest num1 is in a state >= num2

	qb
	true if quest num1 is in a state <= num2

	qu
	true if quest num1 is in state num2

	ra
	if num1 > 0, true if PC’s race is num1

if num1 < 0, true if PC’s race is not –num1

	re
	if num1 > 0, true if NPC’s reaction to PC is >= num1

if num1 < 0, true if NPC’s reaction to PC is <= -num1

	rp
	if num1 > 0, true if PC has the reputation num

if num1 < 0, true if PC does NOT have rumor –num

	rq
	if num1 > 0, true if rumor num1 is quelled

if num1 < 0, true if rumor –num1 is NOT quelled

	ru
	if num1 > 0, true if PC has rumor num1 in log

if num1 < 0, true if PC does NOT have rumor –num1 in log

	sc
	if num2 > 0, true if PC knows at least num2 spells in college num1

if num2 <= 0, true if PC knows no more than -num2 spells in college num1

	sk
	if num2 > 0, true if PC’s rank in skill num1 is >= num2

if num2 < 0, true if PC’s rank in skill num1 is <= -num2

	ss
	if num1 > 0, true if the current story state is >= num1

if num1 < 0, true if the current story state is <= -num1

	ta
	if num1 > 0, true if PC’s Tech Aptitude is >= num1

if num1 < 0, true if PC’s Tech Aptitude is <= -num1

	tr
	if num2 > 0, true if PC’s training in skill num1 is >= num2

if num2 < 0, true if PC’s training in skill num1 is <= -num2

	wa
	if num1 is 0, true if NPC is not currently waiting for his leader to pick him up

if num1 is 1, true if NPC is currently waiting for his leader to pick him up

	wt
	if num1 is 0, true if NPC has not waited for his leader and the time expired

if num1 is 1, true if NPC waited for his leader and the time expired

Example:

{ps 3, al –500} true if the PC’s perception is >= 3 and his alignment is below –500

Here are some expected ranges to test for each code

	$$
	ranges from 0 to millions of gold

	al
	ranges from –1000 (pure evil) to 1000 (pure goodness) with 0 being neutral. 100 is tinged with good, 300 is squarely good, 500 is quite good, 700 is damn good, 900 is saintly. Reverse for evil.

	ar
	indexes are stored in data/mes/area.mes

	ch
	ranges from 1 (very hateable personality) to 20 (god-like presence), with 10 being average. 3 is very annoying, 7 is annoying, 13 is nice to be around, and 17 is love to be around.

	fo
	num1 MUST be 0 or 1

	gf
	num1 ranges from 1000 to 3199

	gv
	num1 ranges from 1000 to 1999

	ha
	ranges from 1 (couldn’t sell a life preserver to a drowning man) to 20 (could sell a refrigerator to an Eskimo), with 5 being default. 3 means he can rarely get a good deal, 7 means he can sometimes get a good deal from nice people, 10 means he can negotiate good deals but rarely great ones, 15 means he can usually get great deals.

	ia
	indexes are stored in data/mes/area.mes

	in
	indexes are stored in data/oemes/oname.mes

	lc
	num1 ranges from 0 to 3, num2 from 0 to 255

	le
	levels can range from 1 to 20

	lf
	num1 ranges from 0 to 31, num2 from 0 to 1

	ma
	this ranges from 0 to 100, with 0 being the default. 100 is a master mage, 80 is an awesome mage, 60 is a great mage, 40 is a good mage, and 20 is a starting mage.

	me
	num1 MUST be 0 or 1

	na
	ranges from –1000 (pure evil) to 1000 (pure goodness) with 0 being neutral. 100 is tinged with good, 300 is squarely good, 500 is quite good, 700 is damn good, 900 is saintly. Reverse for evil.

	ni
	indexes are stored in data/oemes/oname.mes

	pa
	indexes are stored in data/oemes/oname.mes

	pe
	ranges from 1 (notices nothing) to 20 (notices everything), with 10 being average. 3 will miss a lot of stuff, 7 will miss things that are not obvious and some that are, 10 will miss some non-obvious things, 13 will rarely miss hidden things, and 17 will notice anything that is not well-hidden.

	pf
	num1 ranges from 1000 to 3199

	ps
	ranges from 1 (no one cares about his opinion) to 20 (people think his words are law), with 5 being default. 3 means he must struggle to convince people the sky is blue, 7 means he can convince people with great effort, 10 means he can convince people to do things if they are predisposed, 15 means he can convince people to do things they might regret.

	pv
	num1 ranges from 1000 to 1999

	qa
	the states are unknown 0, mentioned 1, active 2, achieved 3, completed 4, other 5 and botched 6.

	qb
	the states are unknown 0, mentioned 1, active 2, achieved 3, completed 4, other 5 and botched 6.

	qu
	the states are unknown 0, mentioned 1, active 2, achieved 3, completed 4, other 5 and botched 6.

	ra
	races are 1.human, 2.dwarf, 3.elf, 4.half elf, 5.gnome, 6.halfling, 7.half orc, 8.half ogre

	re
	reaction is usually between 0 and 100, with 50 being neutral. Below 0 is pure hatred, and above 100 is pure love.

	rp
	reputations are 1000 or greater

	rq
	rumor numbers are 1000 or greater

	ru
	rumor numbers are 1000 or greater

	sc
	spell colleges range from 0-15 and spells known from 0-5

	sk
	skills range from 0-11 for basic skills, and 12-15 for tech skills. The rank ranges from 0-20.

	ss
	The story state value ranges from 0 on up

	ta
	this ranges from 0 to 100, with 0 being the default. 100 is a master technologist, 80 is an awesome technologist, 60 is a great technologist, 40 is a good technologist, and 20 is a starting technologist.

	tr
	skills range from 0-11 for basic skills, and 12-15 for tech skills. The training ranges from 0-3, 0 being untrained and 3 being master.

Result

The Result field can be filled with a number of results to be triggered if the line is spoken by a PC or an NPC. These results are ONLY triggered in dialog and are NOT triggered if the line is used as a float, barter or other kind of message. The general format of a result field is

code num1 num2

where code is a 2-letter code possibly followed by one or two numbers. Multiple results can be placed in one field, separated by commas, and all of their results are triggered in order.

Result codes and their numbers are:

	$$
	if num1 >= 0, add num1 money to PC

if num1 < 0, remove this much gold from PC and followers

	al
	if +num1, then add num1 to PC’s alignment

if -num1, then subtract num1 from PC’s alignment

if <num1, then PC’s alignment cannot be greater than num1

if >num1, then PC’s alignment cannot be less than num1

if num1, then set PC’s alignment to num1

	ce
	start the character editor on the NPC in passive mode (this will terminate dialog)

	co
	start combat between speakers and terminate dialog

	et
	ONLY USABLE ON PC LINES!

Tests whether PC can have expert training in skill num1. If he can, then, continue dialog at num2. If he cannot, the NPC will say why and then dialog will continue at the response line for this line. Please note that only two reasons are tested for (not enough rank and no training) and that specifically we do not test for money or if the PC already has expert training (or higher).

	fl
	float line num1 above NPC’s head and terminate dialog

	fp
	give 1 fate point to the PC

	gf
	set global flag num1 equal to value num2 (can only be 0 or 1)

	gv
	set global variable num1 equal to value num2

	ii
	start the inventory UI in identify mode

	in
	if num >= 0, transfer item with name index num1 from PC or follower to NPC

if num < 0, transfer item with name index -num1 from NPC to PC

	jo
	ONLY USABLE ON PC LINES!

ask NPC to join PC’s group. If num1 is 0, then pay attention to charisma limits. If num1 is 1, then override charisma limits. If successful, continue dialog at num2. If unsuccessful, the NPC will say why and then dialog will continue at the response line for this line.

	lc
	set local counter num1 equal to num2

	lf
	set local flag num1 equal to num2

	lv
	make NPC leave the party

	mm
	mark map area num1 as known on PC’s map

	nk
	kill the NPC involved in this dialog

	np
	add newspaper num1 with priority num2 (0 means no priority, 1 means high priority – make this tomorrow’s paper)

	or
	Set NPC’s origin to num

	pf
	set PC flag num1 equal to value num2 (can only be 0 or 1)

	pv
	set PC variable num1 equal to value num2

	qu
	set quest num1 as being in state num2. the states are unknown 0, mentioned 1, active 2, achieved 3, completed 4, other 5 and botched 6.

	re
	if +num1, then add num1 to NPC’s reaction to PC

if -num1, then subtract num1 from NPC’s reaction to PC

if <num1, then NPC’s reaction to PC cannot be greater than num1

if >num1, then NPC’s reaction to PC cannot be less than num1

if num1, then set NPC’s reaction to PC to num1

	ri
	start the inventory UI in repair mode

	rp
	if num1 > 0, add reputation num1 to PC

if num1 < 0, remove reputation –num1 from PC

	rq
	quell rumor num

	ru
	add rumor num to PC log

	sc
	NPC will stay close

	so
	NPC will spread out

	ss
	set the current story state to num1 if it is lower than num1

	su
	start the schematic UI on the PC

	tr
	set the training of skill num1 to num2

	uw
	ONLY USABLE ON PC LINES!

ask NPC to unwait and rejoin PC’s group (assumes NPC was told to wait). If num1 is 0, then pay attention to charisma limits. If num1 is 1, then override charisma limits. If successful, continue dialog at num2. If unsuccessful, the NPC will say why and then dialog will continue at the response line for this line.

	wa
	make the NPC wait here

	xp
	award experience points to the PC as if he had solved a quest of level num1

Example:

{re –5, fl 5} the NPC’s reaction to the PC is reduced by 5, he will float line 5 above his head, and dialog is over

Quests

Quests are treated specially by the script system. Each quest has an associated global quest structure, which, among other fields, contains a quest status variable and quest dialog entry points for each state of that variable. The seven states are:

	Unknown
	the NPC has never talked about the quest to the PC, so the PC has no knowledge of it

	Mentioned
	the NPC has mentioned the quest, but the PC has not accepted it

	Accepted
	the PC has agreed to do the quest

	Achieved
	the PC has achieved the goal of the quest, but has to return to the NPC to report it

	Completed
	the PC has finished the quest by achieving and reporting the goal

	Other
	another PC has completed this quest

	Botched
	the quest can no longer be completed by anyone. Perhaps the item was destroyed or the victim killed.

Note that most of the quest structure must be kept in a PC-related data area, in case two PC’s are trying to do the same quest. One PC may have accepted the quest, while another has never heard of it before, and the NPC must react appropriately to each PC. However, each quest has a global flag which indicates that it is completed or botched, so that the NPC may check this flag and react appropriately. Note also that many quests can only be completed by one PC (e.g. there is only one little girl to rescue), but remember that any experience rewarded to a PC will automatically be shared by any team member in the vicinity.

To mention a quest, use the dialog text line

Q:N

as a PC response, where N is the quest number. The appropriate dialog line is inserted based on the quest state. For example, if the NPC has never mentioned the quest, the unknown dialog entry point is used. If the player accepts the quest, the line is replaced with the accepted dialog entry point.

Here’s an example involving rescuing a prince’s daughter. Given a quest that has the following structure to it:

Quest Status
Dialog Entry Point

Unknown
5

Mentioned
6

Accepted
7

Achieved
7

Completed
-1

Other

-1

Botched
-1

We can make a dialog as follows:

{1}{What brings you before me?}{What is it madam?}{}{}{}{}

{2}{Q:1}{}{0}{}{0}{}

{3}{Nothing. Bye.}{}{1}{}{0}{}

{4}{The following are quest responses.}{}{}{}

{5}{I have heard you have a job available to a resourceful individual}{}{5}{}{10}{qu 1 1}

{6}{I have come to discuss the rescue of your daughter.}{}{5}{}{20}{}

{7}{I have found your daughter}{}{5}{}{script call to check this, If true, set quest completion, give player lots of gold, add 50 to reaction and goto 60, else lower reaction by 20 and goto 70}{}

{10}{Yes, my daughter has been kidnapped by ruffians. Can you rescue her?}{ Yes, my daughter has been kidnapped by ruffians. Can you rescue her?}{}{}{}{}

{11}{Yes.}{}{1}{}{50}{qu 1 2}

{12}{Maybe. I’ll come back.}{}{1}{}{0}{}

{20}{Have you decided to rescue my daughter?}{ Have you decided to rescue my daughter?}{}{}{}{}

{21}{Yes.}{}{1}{}{50}{qu 1 2}

{22}{Not yet. Bye.}{}{1}{}{0}{}

{50}{Thank you. Let me know if you find her.}{You are too kind madam.}{}{}{}{}

{51}{Ok.}{}{1}{}{0}{}

{60}{Here is you weight in gold! You have my gratitude.}{Thank you madam. Here is your gold!}{}{}{}{}

{61}{Bye.}{}{1}{}{0}{}

{70}{You liar! Begone!}{Lying bitch! Leave me!}{}{}{}{}

{71}{[exit]}{}{1}{}{0}{}

On the daughter’s object, we hook in a script on her death which, if this quest is not completed, we mark this script as failed. However, first we MUST check if the script is completed, since it should not affect the player if the daughter dies after she is returned.

More so, since the global quest flag is set to completed or failed too, the script for the prince can change his dialog starting point. For completed and other, he might say

{100}{I’m so happy to have my daughter back! What can I do for you sir?}{ I’m so happy to have my daughter back! What can I do for you madam?}{}{}{}{}

and for failure

{110}{My only daughter, dead…I am in hell. What would you have of me?}{ My only daughter, dead…I am in hell. What would you have of me?}{}{}{}{}

The possibilities are endless.

Script Attachment Points

The following is a list of every script attachment point in the game and each one’s primary function. All of the attachment points are editable in WorldEd.

	ATTACHMENT POINT
	ATTACHMENT NUMBER
	PRIMARY FUNCTION

	EXAMINE
	0
	Override the default examine text of an object, providing a message in the display window or a floating text bubble above the object.

	USE
	1
	Prevent an object from being opened or used, or to detect that such an action is taking place.

	DESTROY
	2
	Detect or prevent the destruction of an object.

	UNLOCK
	3
	Force a container, door or window to be locked

	GET
	4
	Detect or prevent an item from being picked up from the ground

	DROP
	5
	Detect or prevent an item from being dropped to the ground

	THROW
	6
	Detect or prevent a critter from throwing an item

	HIT
	7
	Detect that a critter has used an item to successfully hit a target

	MISS
	8
	Detect that a critter has used an item in a unsuccessful attempt to hit a target

	DIALOG
	9
	Allow a dialog interface to be used

	FIRST HEARTBEAT
	10
	Detect when a critter first becomes active or prevent its activity

	CATCHING THIEF PC
	11
	Detect stealing or prevent an attack because of it

	DYING
	12
	Detect or prevent a critter from dying

	ENTER COMBAT
	13
	Detect when an NPC has begun combat

	EXIT COMBAT
	14
	Detect when an NPC has finished combat

	START COMBAT
	15
	Detect when an NPC has begun a combat round

	END COMBAT
	16
	Detect when an NPC has completed a combat round

	BUY OBJECT
	17
	Detect or prevent an NPC from buying an item from the PC

	RESURRECT
	18
	Detect or prevent a critter from being raised from the dead

	HEARTBEAT
	19
	Allow periodic activity of a critter or to prevent such activity

	LEADER KILLING
	20
	Detect when an NPC’s leader has killed a victim

	INSERT ITEM
	21
	Detect when an object has taken possession of an item

	WILL KOS
	22
	Prevent an NPC from attacking a critter on sight

	TAKING DAMAGE
	23
	Detect or prevent an object from taking damage

	WIELD ON
	24
	Detect when an item is being wielded

	WIELD OFF
	25
	Detect when an item is being unwielded

	CRITTER HITS
	26
	Detect that a critter has successfully hit a target

	NEW SECTOR
	27
	Detect that an NPC’s leader has entered a new sector

	REMOVE ITEM
	28
	Detect when an object has lost a possession

	LEADER SLEEPING
	29
	Detect when an NPC’s PC leader sleeps

	BUST
	30
	Detect when an object busts

	31
	Unavailable script attachment point

	TRANSFER
	32
	Detect or prevent an item from being transferred from one inventory to another

	CAUGHT THIEF
	33
	Detect a thief (called on the thief, not the target like with CATCHING THIEF PC)

	CRITICAL HIT
	34
	Detect that a critter has used a weapon to critically hit a target or that his armor has taken a critical hit from target

	CRITICAL MISS
	35
	Detect that a critter has used a weapon in a critical failure in an attempt to hit a target or that his armor has taken a critical miss from himself

The following information details the exact usage of each script: when it is called, what values its three parameters (triggerer, attachee, and extra object) may have, and what effect the return value of RETURN AND SKIP DEFAULT will have in the game.

EXAMINE

· when called: when the pc hovers over an object in the isometric view with his mouse

· triggerer: pc

· attachee: targeted object

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: the standard examine data is not displayed

USE

· when called: when a critter uses something, ie. a container, door or window is opened, a trap is triggered, an item is used (outside of the context of combat. For combat see HIT and MISS script attachment points)

· triggerer: object user

· attachee: object used (may be NULL with a tile trap)

· extra object: the target of the object (usually NULL, is non–NULL when an item is used by a critter on a critter)

· effect of RETURN AND SKIP DEFAULT: the use of the object is disallowed. So, for example, a container would not open.

DESTROY

· when called: when an object is being completely destroyed and removed from the game

· triggerer: object

· attachee: object

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: the object will not be destroyed. Note that the item is not healed or restored in any way. It is simply not destroyed.

UNLOCK

· when called: when a lockable object (container, door or window) is being queried by a critter to see if the object is locked. Note that doors and windows are queried by the path generation function, so this script could be called multiple times when a critter is attempting to find a path that includes the door or window, and it could be called even when ultimately the path with the door or window is not used.

· triggerer: critter

· attachee: lockable object

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: the game assumes the object cannot be unlocked

GET

· when called: when a critter is picking up an item from the ground. Note: this script is NOT called when an item is transferred from one critter to another (see TRANSFER attachment point)

· triggerer: critter

· attachee: item

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: the critter is not allowed to pick up the item, which remains on the ground

DROP

· when called: when an item is removed from a critter’s inventory and place on the ground

· triggerer: critter

· attachee: item

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: the item remains in the critter’s inventory

THROW

· when called: when a critter tries to throw an item at a target

· triggerer: critter

· attachee: item

· extra object: target (may be NULL if the critter is throwing item at a location)

· effect of RETURN AND SKIP DEFAULT: the throw is disallowed. No message is generated.

HIT

· when called: when a successful attack is performed by a critter on a target

· triggerer: critter

· attachee: item

· extra object: target (may be NULL if the critter is throwing item at a location)

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the hit.

MISS

· when called: when an unsuccessful attack is performed by a critter on a target. Note that for unsuccessful throws, this occurs when the projectile has reached its maximum range

· triggerer: critter

· attachee: item

· extra object: target (may be NULL if the critter is throwing item at a location)

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the miss.

DIALOG

· when called: when the pc targets and clicks on an npc in the isometric view

· triggerer: pc

· attachee: targeted pc

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: the npc will NOT float a generic greeting

FIRST HEARTBEAT

· when called: when a critter is on a sector that is loaded into memory

· triggerer: critter

· attachee: critter

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: the critter will not perform normal heartbeat functions, like combat or AI-related activities

CATCHING THIEF PC

· when called: when the PC fails or critically fails at pick pocketing (stealing or planting) an item from an NPC, or when a container, door or window that the NPC cares about is damaged or picklocked by the PC

· triggerer: PC

· attachee: NPC

· extra object: pick pocketed item or opened object

· effect of RETURN AND SKIP DEFAULT: the NPC will NOT attack the PC

DYING

· when called: when a killer kills a victim

· triggerer: killer

· attachee: victim

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: the effects of dying (magic effects turning off, experience point awards, etc) do not occur. Note that as with DESTROY, the critter is not healed or restored in any way. He is simply not processed for death. The script must heal him.

ENTER COMBAT

· when called: when an NPC switches to combat mode and targets a foe

· triggerer: foe

· attachee: NPC

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the combat.

EXIT COMBAT

· when called: when an NPC stops fighting

· triggerer: last valid foe (may be dead or NULL)

· attachee: NPC

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the end of combat.

START COMBAT

· when called: when a combat round for an NPC starts in turn-based, or before an attack begins in real-time

· triggerer: foe

· attachee: NPC

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the start of combat.

END COMBAT

· when called: when a combat round for an NPC ends in turn-based, or when an attack completes in real-time

· triggerer: foe

· attachee: NPC

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the end of combat.

BUY OBJECT

· when called: when NPC buys an item from the PC

· triggerer: item

· attachee: NPC

· extra object: PC

· effect of RETURN AND SKIP DEFAULT: NPC won’t buy the item in question

RESURRECT

· when called: when a dead critter is being raised from the dead by a caster, who might be using an item

· triggerer: caster

· attachee: critter

· extra object: item (can be NULL)

· effect of RETURN AND SKIP DEFAULT: critter is not resurrected

HEARTBEAT

· when called: every two seconds on all NPC’s in loaded sectors

· triggerer: npc

· attachee: npc

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no heartbeat functions (combat, AI, etc)

LEADER KILLING

· when called: when an NPC’s leader is killing a victim

· triggerer: victim

· attachee: NPC

· extra object: leader

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the death of the victim

INSERT ITEM

· when called: when an item is inserted into an object’s inventory

· triggerer: object

· attachee: item

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the acquisition of the item.

WILL KOS

· when called: when an NPC is considering initiating an attack on a foe (called “kill on sight”)

· triggerer: foe

· attachee: npc

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: NPC will not attack the foe. Note that the NPC will still fight back if attacked.

TAKING DAMAGE

· when called: when an object is hit by a foe

· triggerer: foe

· attachee: object

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: object will not take any damage

WIELD ON

· when called: when an item is wielded by a critter

· triggerer: critter

· attachee: item

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the wielding of the item.

WIELD OFF

· when called: when an item is unwielded by a critter

· triggerer: critter

· attachee: item

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the unwielding of the item.

CRITTER HIT

· when called: when a successful attack is performed by a critter on a target

· triggerer: target

· attachee: critter

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the hit.

NEW SECTOR

· when called: when an NPC’s leader has entered a new sector

· triggerer: leader

· attachee: npc

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only.

REMOVE ITEM

· when called: when an item is removed from an object’s inventory

· triggerer: object

· attachee: item

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the loss of the item.

LEADER SLEEPING

· when called: when an NPC’s PC leader sleeps

· triggerer: PC leader

· attachee: NPC

· extra object: OBJ_HANDLE_NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the PC from sleeping.

BUST

· when called: when an object is being busted by an attacker (usually, this means reduced to 0 hit points but not destroyed. Not everything can bust).

· triggerer: attacker

· attachee: object

· extra object: NULL

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the object from busting.

TRANSFER

· when called: when an item’s owner is transferring an item to a target (either a critter or a container)

· triggerer: owner

· attachee: target

· extra object: item

· effect of RETURN AND SKIP DEFAULT: the target is not allowed to receive the item, which remains on the owner

CAUGHT THIEF

· when called: when the thief fails or critically fails at pick pocketing (stealing or planting) an item from a target critter

· triggerer: target

· attachee: thief

· extra object: pick pocketed item

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the item from being stolen.

CRITICAL HIT

· when called: when a critical hit is performed by a critter on a target using a weapon OR when a critter takes a critical hit to his armor by target

· triggerer: critter

· attachee: weapon or armor

· extra object: target (may be NULL if the critter is throwing item at a location)

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the hit.

CRITICAL MISS

· when called: when an critical miss is performed by a critter on a target using a weapon (note that for unsuccessful throws, this occurs when the projectile has reached its maximum range) or when a critter critically misses and hits himself

· triggerer: critter

· attachee: weapon or armor

· extra object: target (may be NULL if the critter is throwing item at a location) or critter (in case of a critical miss on himself)

· effect of RETURN AND SKIP DEFAULT: no effect. This script is called for informational reasons only. It cannot prevent the miss.

